Created:April 14, 2025
This calculator helps you compute the values of a normal distribution given probabilities and parameters. Unlike the regular normal distribution calculator that finds probabilities given values, this inverse calculator finds values given probabilities. You can find the value x such that P(X < x) = p, P(X > x) = p, P(|X - μ| < x) = p, or P(|X - μ| > x) = p.
Calculator
Parameters
Important:If you have variance (σ² = 25), enter standard deviation (σ = 5)
Distribution Chart
Click Calculate to view the distribution chart
Related Calculators
Learn More
Inverse Normal Distribution
Definition: The inverse normal distribution calculation involves finding the value(s) in a normal distribution that correspond to a given probability. This is the opposite of the regular normal distribution calculation, which finds probabilities given values.
Formula:For a normal distribution with mean and standard deviation , if , then: Where is the inverse of the standard normal cumulative distribution function.
Common cases:
- To find such that : Use
- To find such that : Use
- To find such that : Use
- To find such that : Use
Example: Let , find the value such that .
So the value where is 13.29.
How to Calculate Inverse Normal in R
R
library(tidyverse)
# P(X < x) = 0.95, X ~ N(10, 4)
x_value <- qnorm(0.95, mean = 10, sd = 2)
print(x_value) # 13.28971
# P(X > x) = 0.05, X ~ N(10, 4)
x_value <- qnorm(1 - 0.05, mean = 10, sd = 2)
print(x_value) # 13.28971
# P(|X - μ| < x) = 0.95
mean_val <- 10
sd_val <- 2
prob <- 0.95
z_critical <- qnorm(0.5 + prob/2)
x_value <- z_critical * sd_val
lower_bound <- mean_val - x_value
upper_bound <- mean_val + x_value
print(c(x_value, lower_bound, upper_bound)) # 3.919928 6.080072 13.919928
#P(|X - μ| > x) = 0.05
z_critical <- qnorm(1 - 0.05/2)
x_value <- z_critical * sd_val
lower_bound <- mean_val - x_value
upper_bound <- mean_val + x_value
print(c(x_value, lower_bound, upper_bound)) # 3.919928 6.080072 13.919928
How to Calculate Inverse Normal in Python
Python
import numpy as np
from scipy import stats
# P(X < x) = 0.95, X ~ N(10, 4)
x_value = stats.norm.ppf(0.95, loc=10, scale=2)
print(x_value) # 13.28971
# P(X > x) = 0.05, X ~ N(10, 4)
x_value = stats.norm.ppf(1 - 0.05, loc=10, scale=2)
print(x_value) # 13.28971
# P(|X - μ| < x) = 0.95
mean_val = 10
sd_val = 2
prob = 0.95
z_critical = stats.norm.ppf(0.5 + prob/2)
x_value = z_critical * sd_val
lower_bound = mean_val - x_value
upper_bound = mean_val + x_value
print([x_value, lower_bound, upper_bound]) # [3.919928, 6.080072, 13.919928]
# P(|X - μ| > x) = 0.05
z_critical = stats.norm.ppf(1 - 0.05/2)
x_value = z_critical * sd_val
lower_bound = mean_val - x_value
upper_bound = mean_val + x_value
print([x_value, lower_bound, upper_bound]) # [3.919928, 6.080072, 13.919928]