StatsCalculators.com

Inverse Normal Distribution

Created:April 14, 2025

This calculator helps you compute the values of a normal distribution given probabilities and parameters. Unlike the regular normal distribution calculator that finds probabilities given values, this inverse calculator finds values given probabilities. You can find the value x such that P(X < x) = p, P(X > x) = p, P(|X - μ| < x) = p, or P(|X - μ| > x) = p.

Calculator

Parameters

Important:If you have variance (σ² = 25), enter standard deviation (σ = 5)

Distribution Chart

Click Calculate to view the distribution chart

Related Calculators

Learn More

Inverse Normal Distribution

Definition: The inverse normal distribution calculation involves finding the value(s) in a normal distribution that correspond to a given probability. This is the opposite of the regular normal distribution calculation, which finds probabilities given values.

Formula:For a normal distribution with mean μ\mu and standard deviation σ\sigma, if p=P(Xx)p = P(X \leq x), then: x=F1(p)=μ+σΦ1(p)x = F^{-1}(p) = \mu + \sigma \Phi^{-1}(p)Where Φ1\Phi^{-1} is the inverse of the standard normal cumulative distribution function.

Common cases:

  • To find xx such that P(X<x)=pP(X < x) = p: Use x=μ+σΦ1(p)x = \mu + \sigma \Phi^{-1}(p)
  • To find xx such that P(X>x)=pP(X > x) = p: Use x=μ+σΦ1(1p)x = \mu + \sigma \Phi^{-1}(1-p)
  • To find xx such that P(Xμ<x)=pP(|X - \mu| < x) = p: Use x=σΦ1(0.5+p/2)x = \sigma \Phi^{-1}(0.5 + p/2)
  • To find xx such that P(Xμ>x)=pP(|X - \mu| > x) = p: Use x=σΦ1(1p/2)x = \sigma \Phi^{-1}(1 - p/2)
Example: Let XN(10,4)X \sim N(10, 4), find the value xx such that P(X<x)=0.95P(X < x) = 0.95.

x=10+2Φ1(0.95)=10+2(1.645)=13.29x = 10 + 2 \Phi^{-1}(0.95) = 10 + 2(1.645) = 13.29

So the value xx where P(X<x)=0.95P(X < x) = 0.95 is 13.29.

How to Calculate Inverse Normal in R

R
library(tidyverse)

# P(X < x) = 0.95, X ~ N(10, 4)
x_value <- qnorm(0.95, mean = 10, sd = 2)
print(x_value) # 13.28971

# P(X > x) = 0.05, X ~ N(10, 4)
x_value <- qnorm(1 - 0.05, mean = 10, sd = 2)
print(x_value) # 13.28971

# P(|X - μ| < x) = 0.95
mean_val <- 10
sd_val <- 2
prob <- 0.95

z_critical <- qnorm(0.5 + prob/2)
x_value <- z_critical * sd_val
lower_bound <- mean_val - x_value
upper_bound <- mean_val + x_value
print(c(x_value, lower_bound, upper_bound)) # 3.919928  6.080072 13.919928

#P(|X - μ| > x) = 0.05
z_critical <- qnorm(1 - 0.05/2)
x_value <- z_critical * sd_val
lower_bound <- mean_val - x_value
upper_bound <- mean_val + x_value
print(c(x_value, lower_bound, upper_bound)) # 3.919928  6.080072 13.919928

How to Calculate Inverse Normal in Python

Python
import numpy as np
from scipy import stats

# P(X < x) = 0.95, X ~ N(10, 4)
x_value = stats.norm.ppf(0.95, loc=10, scale=2)
print(x_value)  # 13.28971

# P(X > x) = 0.05, X ~ N(10, 4)
x_value = stats.norm.ppf(1 - 0.05, loc=10, scale=2)
print(x_value)  # 13.28971

# P(|X - μ| < x) = 0.95
mean_val = 10
sd_val = 2
prob = 0.95

z_critical = stats.norm.ppf(0.5 + prob/2)
x_value = z_critical * sd_val
lower_bound = mean_val - x_value
upper_bound = mean_val + x_value
print([x_value, lower_bound, upper_bound])  # [3.919928, 6.080072, 13.919928]

# P(|X - μ| > x) = 0.05
z_critical = stats.norm.ppf(1 - 0.05/2)
x_value = z_critical * sd_val
lower_bound = mean_val - x_value
upper_bound = mean_val + x_value
print([x_value, lower_bound, upper_bound])  # [3.919928, 6.080072, 13.919928]