This calculator helps you analyze the distribution of your data through its key percentiles. It calculates the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values, providing a comprehensive overview of your dataset's spread and central tendency. The calculator also generates both a professional box plot and an annotated histogram to visualize your data's distribution, automatically detects and highlights outliers, and provides detailed interpretation explaining whether your data is symmetric or skewed.
Need a quick calculation? Enter your numbers below:
The Five-Number Summary provides a comprehensive overview of a dataset's distribution through five key values: minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum.
Range:
Interquartile Range (IQR):
Consider a dataset of student test scores. Here's how to read the five-number summary from a box plot:
To create a box plot from your data:
You can use our Box Plot Calculator to create box plots automatically from your data.
Use summary() for basic statistics orquantile() for more control over percentiles.
# Sample numerical data
data <- c(12, 15, 18, 20, 22, 25, 28, 30, 35, 40, 45, 50, 55, 60, 65)
# Method 1: Quick summary (includes mean and other stats)
summary(data)
# Method 2: Exact five number summary
five_num <- quantile(data, probs = c(0, 0.25, 0.5, 0.75, 1))
names(five_num) <- c("Minimum", "Q1", "Median", "Q3", "Maximum")
print(five_num)
# Method 3: Detailed analysis with additional statistics
library(tidyverse)
five_number_summary <- tibble(
Statistic = c("Minimum", "Q1", "Median", "Q3", "Maximum", "Range", "IQR"),
Value = c(
min(data),
quantile(data, 0.25),
median(data),
quantile(data, 0.75),
max(data),
max(data) - min(data),
IQR(data)
)
)
print(five_number_summary)
# Visualization: Box plot
boxplot(data,
main = "Five Number Summary Box Plot",
ylab = "Values",
col = "lightblue",
border = "darkblue")
# Add labels to the box plot
text(1.3, quantile(data, c(0, 0.25, 0.5, 0.75, 1)),
labels = c("Min", "Q1", "Median", "Q3", "Max"),
cex = 0.8)Use describe() method in pandas or numpy.percentile() for precise control.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Sample data
data = [12, 15, 18, 20, 22, 25, 28, 30, 35, 40, 45, 50, 55, 60, 65]
df = pd.DataFrame({'values': data})
# Method 1: Using pandas describe (includes additional stats)
print("Pandas describe():")
print(df['values'].describe())
# Method 2: Manual calculation of five number summary
five_number = {
'Minimum': np.min(data),
'Q1': np.percentile(data, 25),
'Median': np.median(data),
'Q3': np.percentile(data, 75),
'Maximum': np.max(data)
}
# Additional statistics
five_number['Range'] = five_number['Maximum'] - five_number['Minimum']
five_number['IQR'] = five_number['Q3'] - five_number['Q1']
# Display as DataFrame
summary_df = pd.DataFrame(list(five_number.items()),
columns=['Statistic', 'Value'])
print("\nFive Number Summary:")
print(summary_df)
# Method 3: Using numpy quantile for exact percentiles
percentiles = np.percentile(data, [0, 25, 50, 75, 100])
labels = ['Minimum', 'Q1', 'Median', 'Q3', 'Maximum']
for label, value in zip(labels, percentiles):
print(f"{label}: {value}")
# Visualization: Box plot
plt.figure(figsize=(8, 6))
plt.boxplot(data, tick_labels=['Data'])
plt.title('Five Number Summary Box Plot')
plt.ylabel('Values')
plt.grid(True, alpha=0.3)
plt.show()
# Histogram with quartile lines
plt.figure(figsize=(10, 6))
plt.hist(data, bins=10, alpha=0.7, color='lightblue', edgecolor='black')
for i, (label, value) in enumerate(zip(labels, percentiles)):
color = ['red', 'orange', 'green', 'orange', 'red'][i]
plt.axvline(value, color=color, linestyle='--', linewidth=2, label=label)
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.title('Distribution with Five Number Summary')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()Use MIN, QUARTILE, and MAX functions, or create a box plot for visualization.
=MIN(A1:A100) # Minimum
=QUARTILE(A1:A100,1) # Q1 (First Quartile)
=MEDIAN(A1:A100) # Q2 (Median)
=QUARTILE(A1:A100,3) # Q3 (Third Quartile)
=MAX(A1:A100) # Maximum
=MAX(A1:A100)-MIN(A1:A100) # Range
=QUARTILE(A1:A100,3)-QUARTILE(A1:A100,1) # IQRMethod 1: Using Formulas
=MIN(A1:A100) - Find the minimum value
=QUARTILE(A1:A100,1) - Calculate Q1 (25th percentile)
=MEDIAN(A1:A100) - Find the median (Q2)
=QUARTILE(A1:A100,3) - Calculate Q3 (75th percentile)
=MAX(A1:A100) - Find the maximum value
Method 2: Data Analysis ToolPak
Method 3: Box Plot Visualization
This calculator helps you analyze the distribution of your data through its key percentiles. It calculates the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values, providing a comprehensive overview of your dataset's spread and central tendency. The calculator also generates both a professional box plot and an annotated histogram to visualize your data's distribution, automatically detects and highlights outliers, and provides detailed interpretation explaining whether your data is symmetric or skewed.
Need a quick calculation? Enter your numbers below:
The Five-Number Summary provides a comprehensive overview of a dataset's distribution through five key values: minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum.
Range:
Interquartile Range (IQR):
Consider a dataset of student test scores. Here's how to read the five-number summary from a box plot:
To create a box plot from your data:
You can use our Box Plot Calculator to create box plots automatically from your data.
Use summary() for basic statistics orquantile() for more control over percentiles.
# Sample numerical data
data <- c(12, 15, 18, 20, 22, 25, 28, 30, 35, 40, 45, 50, 55, 60, 65)
# Method 1: Quick summary (includes mean and other stats)
summary(data)
# Method 2: Exact five number summary
five_num <- quantile(data, probs = c(0, 0.25, 0.5, 0.75, 1))
names(five_num) <- c("Minimum", "Q1", "Median", "Q3", "Maximum")
print(five_num)
# Method 3: Detailed analysis with additional statistics
library(tidyverse)
five_number_summary <- tibble(
Statistic = c("Minimum", "Q1", "Median", "Q3", "Maximum", "Range", "IQR"),
Value = c(
min(data),
quantile(data, 0.25),
median(data),
quantile(data, 0.75),
max(data),
max(data) - min(data),
IQR(data)
)
)
print(five_number_summary)
# Visualization: Box plot
boxplot(data,
main = "Five Number Summary Box Plot",
ylab = "Values",
col = "lightblue",
border = "darkblue")
# Add labels to the box plot
text(1.3, quantile(data, c(0, 0.25, 0.5, 0.75, 1)),
labels = c("Min", "Q1", "Median", "Q3", "Max"),
cex = 0.8)Use describe() method in pandas or numpy.percentile() for precise control.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Sample data
data = [12, 15, 18, 20, 22, 25, 28, 30, 35, 40, 45, 50, 55, 60, 65]
df = pd.DataFrame({'values': data})
# Method 1: Using pandas describe (includes additional stats)
print("Pandas describe():")
print(df['values'].describe())
# Method 2: Manual calculation of five number summary
five_number = {
'Minimum': np.min(data),
'Q1': np.percentile(data, 25),
'Median': np.median(data),
'Q3': np.percentile(data, 75),
'Maximum': np.max(data)
}
# Additional statistics
five_number['Range'] = five_number['Maximum'] - five_number['Minimum']
five_number['IQR'] = five_number['Q3'] - five_number['Q1']
# Display as DataFrame
summary_df = pd.DataFrame(list(five_number.items()),
columns=['Statistic', 'Value'])
print("\nFive Number Summary:")
print(summary_df)
# Method 3: Using numpy quantile for exact percentiles
percentiles = np.percentile(data, [0, 25, 50, 75, 100])
labels = ['Minimum', 'Q1', 'Median', 'Q3', 'Maximum']
for label, value in zip(labels, percentiles):
print(f"{label}: {value}")
# Visualization: Box plot
plt.figure(figsize=(8, 6))
plt.boxplot(data, tick_labels=['Data'])
plt.title('Five Number Summary Box Plot')
plt.ylabel('Values')
plt.grid(True, alpha=0.3)
plt.show()
# Histogram with quartile lines
plt.figure(figsize=(10, 6))
plt.hist(data, bins=10, alpha=0.7, color='lightblue', edgecolor='black')
for i, (label, value) in enumerate(zip(labels, percentiles)):
color = ['red', 'orange', 'green', 'orange', 'red'][i]
plt.axvline(value, color=color, linestyle='--', linewidth=2, label=label)
plt.xlabel('Values')
plt.ylabel('Frequency')
plt.title('Distribution with Five Number Summary')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()Use MIN, QUARTILE, and MAX functions, or create a box plot for visualization.
=MIN(A1:A100) # Minimum
=QUARTILE(A1:A100,1) # Q1 (First Quartile)
=MEDIAN(A1:A100) # Q2 (Median)
=QUARTILE(A1:A100,3) # Q3 (Third Quartile)
=MAX(A1:A100) # Maximum
=MAX(A1:A100)-MIN(A1:A100) # Range
=QUARTILE(A1:A100,3)-QUARTILE(A1:A100,1) # IQRMethod 1: Using Formulas
=MIN(A1:A100) - Find the minimum value
=QUARTILE(A1:A100,1) - Calculate Q1 (25th percentile)
=MEDIAN(A1:A100) - Find the median (Q2)
=QUARTILE(A1:A100,3) - Calculate Q3 (75th percentile)
=MAX(A1:A100) - Find the maximum value
Method 2: Data Analysis ToolPak
Method 3: Box Plot Visualization